
Scalable, Multiplatform, and Autonomous ECG Processor Supported by AI for
Telemedicine Center

Filip Plesinger1, Adam Ivora1, Eniko Vargova1, Radovan Smisek1, Jan Pavlus1, Zuzana Koscova1,
Petr Nejedly1, Veronika Bulkova2, Roman Kozubik2, Josef Halamek1, Pavel Jurak1

1Institute of Scientific Instruments of the CAS, Brno, Czechia
2MDT-Medical Data Transfer, s. r. o., Brno, Czechia

Abstract

Background: Wearable devices play an essential role
in the early diagnosis of heart diseases. However, effective
management of long-term ECG measurements (1-3 weeks)
by a telemedicine center (TMC) requires specifically
designed software.

 Method: We used the multiplatform framework .NET to
build the application. Deep-learning models for QRS
detection, classification, and rhythm analysis were trained
in the PyTorch framework; models were trained using data
from Medical Data Transfer, s. r. o., Czechia (N=73,450
and 12,111). The ONNX runtime libraries were used for
model inference, including acceleration by graphic cards

Results: The pre-production benchmark (recordings of
82 patients) showed a mean accuracy of 0.97 ± 0.04 for
QRS detection and classification into three classes; it also
showed a mean accuracy of 0.97 ± 0.03 for rhythm
classification into seven classes.

Conclusion: The presented software is a fully
automated, multiplatform, and scalable back-end
application to process incoming ECG data in the TMC.
Although it is not freely accessible, we are open to
considering processing ECG data for research and strictly
non-commercial purposes.

1. Introduction

Early detection of cardiac disorders usually improves
treatment efficiency. Wearables (bands, watches), episode
recorders, or ECG holters provide ECG recordings, usually
transmittable using a wireless connection to cloud services.
However, a telemedicine center (TMC) that uses several
kinds of these devices and simultaneously aims for nearly
real-time analysis represents a specific challenge for
software development. In this paper, we present an
autonomous ECG processor – a stand-alone back-end
application for use in an ecosystem of a TMC.

2. Data

Presented software contains two already developed
deep-learning models – the first for QRS
detection/classification [1] and the second model for
rhythm classification. Used data originated from a private
dataset (MDT, Brno, Czechia), consisting of 12,111 ECG
recordings with 619,681 QRS annotations (length 45
seconds, 200Hz sampling) and 73,450 recordings
accompanied by rhythm annotations (length 30 s, 200 Hz
sampling).

The software presented in this paper was verified using
a set of 82 files from various devices (episode recorders,
Holter recorders, wearables). The set consisted of private
(MDT) and public (PhysioNet Challenge 2015 [2]) data.
Sampling frequencies varied from 125 to 256 Hz (med. 250
Hz, IQR 0 Hz) in lengths from 30 to 17,115 seconds
(1,057±2,915). Table 1 shows further dataset description,
grouped by data origin. Recordings were semi-
automatically annotated using the SignalPlant software [3].

Table 1. Verification (benchmark) dataset by data origin.
PAC-premature atrial contraction, PVC-premature
ventricular contraction, VT-ventricular tachycardia
(sustained), NSVT-non-sustained ventricular tachycardia,
SVT-supraventricular tachycardia run, AFIB-atrial
fibrillation, AVBII-2nd degree AV-block. PC2015-
CinC/PhysioNet Challenge 2015, MDT-Medical data
transfer, Brno, Czechia.

Dataset QRS count

(Files)
Device Pathologies

MDT 110,266
(67)

Faros,
Getemed,
Vitaphone

PAC, PVC, VT,
NSVT, SVT,
AVBII, AFIB,
Pauses, Noise

PC2015
[2] 1,028 (15) Unknown PAC, PVC, VT,

NSVT, Noise

Computing in Cardiology 2022; Vol 49 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2022.052

3. Method

The presented software is designed as a multiplatform
command line tool. It allows execution in several modes;
the one specific to the TMC is to wait at a specific folder
(shared with other software instances running on other
computers) and wait for incoming ECG recordings
(usually 30-60 s or 1 hour long). Then each waiting file is
processed (Fig.1), and the solver waits again.

Figure 1. Simplified software flowchart. Input ECG signal
(A) is loaded, optionally with a configuration file (B). The
signal is split into one-hour chunks (C); each chunk is split
into a batch with 30 s long signals (D). The signal is filtered
(0.5-45 Hz), down-sampled to 100 and 200 Hz (E), and fed
into two deep-learning models (F, G). Model outputs are
post-processed (H), and rhythm episodes are connected
between one-hour blocks (I). Finally, results are exported
as an XML file and, optionally, as SignalPlant [3] mark file
(*.sel) or others.

3.1 Deep-learning models

The “heart” of the software is formed by two deep-
learning models, both working in 30 s blocks. Input to both
models is filtered (0.5-45 Hz) and standardized. The first
one detects and classifies QRS complexes into three
classes [1] (Fig.1F). The second model (ResNet
architecture) determines heart rhythm (AFIB, AVBII, or
noise) in the group. Both models are linked to the
application using the Open Neural Network Exchange
(ONNX) file format; therefore, they can be updated
without significant changes to the core application.

3.2 Output postprocessing

Other rhythm disorders are computed during the post-
processing stage when information is fused from both
models: VT, NSVT, pauses, SVT runs or blocks, and PVCs
or PACs in various patterns such as couplets, triplets,
bigeminies, etc. The software also provides clustering by
QRS morphology (Fig.1H and I).

However, results from each one-hour block must be
connected to surrounding one-hour blocks. Also, the
average QRS from each morphological group is used for
final morphological clustering over all one-hour blocks.
For each one-hour block, a heart rate descriptive statistic is
also included (Fig.1I).

Finally, the results are exported as an XML file
containing all rhythm episodes, a description of present
morphologies and their belonging to a specific QRS class,
and a list of QRS complexes with their class and
morphological group. (Fig.1J). Optionally, episodes and
QRS marks can be exported in SignalPlant [3] format for
annotation marks (*.sel) or as CSV or PNG files containing
raw model output (Fig.1K).

We used C# programming language with the .NET
framework to build the application (ver. 5.0). Deep-
learning inference is provided by Microsoft.ML.ONNX
libraries (ver. 1.11.0).

We used Python 3.8 with Pandas [4] and Numpy [5]
packages for model training codes; the PyTorch
framework [6] was used to train deep-learning models.

3.3. Verification with benchmark

We built an automated pipeline to verify software after
each commit to the local GitLab repository. We used
Python 3.8, Pandas [4], Numpy [5], and Scikit-learn [7]
packages for benchmark development. The benchmark
checks the quality of QRS detection and classification,
other rhythm disorders scores, and noise detection scores.

Since the target deployment is in the TMC, we also
needed to estimate computing time in different processing
scenarios. The Wilcoxon signed-rank pair test was used for
statistical testing.

Page 2

4. Results

We developed a fully automated, back-end application
classifying ECG signals. The latest stable version deployed
in TMC (0.3.110) worked using a cluster of one physical
and four virtual computers. These computers shared a
single network folder for incoming data and have run
without crashes since November 2021. The current load is
approximately 400x 1-hour ECG recordings per
computing hour, occupying one-third of the total
computational capacity. In addition, other software
instances process shorter recordings (30 s) from wearables
such as smartwatches or bands.

4.1. QRS Complexes

The benchmark showed a mean weighted QRS
detection/classification accuracy of 0.97 ± 0.044 in 82
ECG files. Table 2 shows specific scores for each of the
separate QRS classes Normal, PAC and PVC.

Table 2. Mean accuracy of QRS detection and
classification of QRS complexes. PAC - premature atrial
contraction, PVC – premature ventricular contraction.
(Overall accuracy is weighted).

QRS type Count Accuracy
Normal 95,399 0.980 ± 0.035
PVC 13,384 0.918 ± 0.191
PAC 2,379 0.928 ± 0.185
Overall 111,162 0.972 ± 0.044

4.2. Rhythm classification

The automated benchmark pipeline analyzed the
classification performance of seven rhythm groups
(Tab.3).

Table 3. Performance of rhythm classification into seven
groups. AFIB-atrial fibrillation, AVB(II)-2nd degree AV
block (type I+II), VT-sustained ventricular tachycardia,
NSVT-non-sustained ventricular tachycardia, SVT-
supraventricular tachycardia.

Rhythm In files Total seconds Accuracy
AFIB 21 27,507 0.921 ± 0.206
AVB(II) 7 653 0.932 ± 0.216
PAUSE 12 254 0.997 ± 0.017
VT 9 59 0.991 ± 0.031
NSVT 11 102 0.988 ± 0.037
SVT 10 520 0.996 ± 0.017
NOISE 15 1,707 0.952 ± 0.119
Overall 82 30,802 0.968 ± 0.030

Overall average accuracy reached 0.968 ± 0.030 with a
minimal value of 0.921 ± 0.216 for AF; maximal accuracy
was reached for pauses (0.997). The highest standard
deviation was found in AVBII and AF classes.

The software also detects other pathological rhythms
tightly linked to the QRS class as PVC couplets, triplets,
bigeminies, etc. These other pathological classes are not
checked with benchmark tests since they are already
covered during the test of QRS complexes. The only
exceptions are VT, NSVT, and SVT, presented in Tab.3.

4.3. Processing Time

During the benchmark test, we also monitored
computing performance. The hardware configuration for
the test was an HP Z6 G4 workstation with CPU Intel®
Xeon ® Silver 4116 CPU at 2.1 GHz, 64 GB of RAM, and
running on the 64-bit operating system Windows 10. We
did the benchmark twice; for the first, deep-learning
inference was done only using CPU; the other run used one
GPU Nvidia GeForce GTX 1080 Ti for inference.
Processing times were evaluated for three groups of files
from the benchmark dataset: 30-60 seconds (N=26), 60-
120 seconds (N=35), and one hour (N=10).

Figure 2. The effect of using GPU (orange) or CPU (gray)
for deep-learning inference in three benchmark subsets by
file length: 30-60 seconds (A, N=26), 60-120 seconds (B,
N=35), and 3,600 seconds (C, N=10).

Page 3

Fig. 2A shows that in shorter files (30-60 seconds),
GPU does not show a lower processing time than the CPU
(p=0.95). However, in slightly longer files (Fig.2B), using
GPU lowers computing times (p=0.003). In long files
(3,600 seconds, Fig.2C), the total computing time is nearly
2.5 times shorter (p=0.003).

Figure 3. The proportion of inference time in three subsets
of benchmark files (A) shows that inference is not the most
computationally consuming process when using GPU in
long files (3,600 s). The detail of distribution in long files
with GPU (B) shows how much other software blocks
consume computing time.

5. Discussion

The benchmark test showed AFIB class has the weakest
accuracy of all considered rhythm classes, followed by
AVBII and NOISE. This can be caused by the fact that
deep-learning inference for considering these episodes
works in 30 s window (1-second overlap). Consequently,
results for AFIB/AVBII and NOISE episodes can start/end
only at 30-second intervals. This leads to unprecise
starts/ends in cases where, for example, an AFIB episode
starts at the 15th second and ends in the 45th second of a
recording. On the other hand, VT or SVT episodes depend
on a QRS detector model's findings, which might explain
their better accuracy. A possible solution to this issue is
finding an approach that could point to parts of signals
necessary for a specific decision. We experimented with an
attention mechanism inspired by [8]; however, we did not
reach acceptable results.

Although the computational power in the current
deployment in TMC shows enough reserve for computing
data in real-time, we would like to decrease the
computational complexity further. The first step could be
consistent pre-processing for both deep-learning models.
Moreover, both deep learning models could be combined
into one model with multiple output heads, decreasing the
time required for transferring data to the GPU and back.

Also, FFT band-pass filtering could be provided by GPU,
as we already implemented in the past [9].

6. Conclusion

We presented scalable and multiplatform ECG
processing back-end software for use in the ecosystem of
TMC. Scalability means that the number of software
instances waiting for data in a shared folder is variable and
may be changed on the fly. Therefore, its computing
capacity may be adopted to TMC needs, including optional
GPU acceleration. The software currently runs on
Windows (physical machine with GPU) and Linux (virtual
machines) operating systems. Although the software is not
freely accessible, we are open to considering processing
ECG data for research and non-commercial purposes.

Acknowledgments

The research was supported by the Czech Technological
Agency grant number FW01010305 and the project
RVO:68081731 by the Czech Academy of Sciences.

References

[1] A. Ivora et al., “QRS detection and classification in
Holter ECG data in one inference step,” Sci. Reports |,
vol. 12, p. 12641, 123AD.

[2] G. D. Clifford et al., “False alarm reduction in critical
care,” Physiol. Meas., vol. 37, no. 8, pp. E5--E23, 2016.

[3] F. Plesinger, J. Jurco, J. Halamek, and P. Jurak,
“SignalPlant: An open signal processing software
platform,” Physiol. Meas., vol. 37, no. 7, 2016.

[4] W. McKinney, “Data Structures for Statistical
Computing in Python,” Proc. 9th Python Sci. Conf., pp.
56–61, 2010.

[5] C. R. Harris et al., “Array programming with NumPy,”
Nat. 2020 5857825, vol. 585, no. 7825, pp. 357–362,
Sep. 2020.

[6] A. Paszke et al., “PyTorch: An imperative style, high-
performance deep learning library,” in Advances in
Neural Information Processing Systems, 2019, vol. 32.

[7] F. Pedregosa et al., “Scikit-learn: Machine learning in
Python,” J. Mach. Learn. Res., 2011.

[8] I. M. Baltruschat, H. Nickisch, M. Grass, T. Knopp, and
A. Saalbach, “Comparison of Deep Learning
Approaches for Multi-Label Chest X-Ray
Classification,” Sci. Reports 2019 91, vol. 9, no. 1, pp.
1–10, Apr. 2019.

[9] P. Nejedly, F. Plesinger, J. Halamek, and P. Jurak,
“CudaFilters: A SignalPlant library for GPU-accelerated
FFT and FIR filtering,” Softw. - Pract. Exp., 2017.

Address for correspondence:

Filip Plesinger
ISI of the CAS
Kralovopolska 147, Brno, Czech Republic 61264
fplesinger@isibrno.cz

Page 4

