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Abstract 

Background: Wearable devices play an essential role 
in the early diagnosis of heart diseases. However, effective 
management of long-term ECG measurements (1-3 weeks) 
by a telemedicine center (TMC) requires specifically 
designed software.  

 Method: We used the multiplatform framework .NET to 
build the application. Deep-learning models for QRS 
detection, classification, and rhythm analysis were trained 
in the PyTorch framework; models were trained using data 
from Medical Data Transfer, s. r. o., Czechia (N=73,450 
and 12,111). The ONNX runtime libraries were used for 
model inference, including acceleration by graphic cards  

Results: The pre-production benchmark (recordings of 
82 patients) showed a mean accuracy of 0.97 ± 0.04 for 
QRS detection and classification into three classes; it also 
showed a mean accuracy of 0.97 ± 0.03 for rhythm 
classification into seven classes. 

Conclusion: The presented software is a fully 
automated, multiplatform, and scalable back-end 
application to process incoming ECG data in the TMC. 
Although it is not freely accessible, we are open to 
considering processing ECG data for research and strictly 
non-commercial purposes. 

 
 

1. Introduction 

Early detection of cardiac disorders usually improves 
treatment efficiency. Wearables (bands, watches), episode 
recorders, or ECG holters provide ECG recordings, usually 
transmittable using a wireless connection to cloud services. 
However, a telemedicine center (TMC) that uses several 
kinds of these devices and simultaneously aims for nearly 
real-time analysis represents a specific challenge for 
software development. In this paper, we present an 
autonomous ECG processor – a stand-alone back-end 
application for use in an ecosystem of a TMC.  

 
 

2. Data 

Presented software contains two already developed 
deep-learning models – the first for QRS 
detection/classification [1] and the second model for 
rhythm classification. Used data originated from a private 
dataset (MDT, Brno, Czechia), consisting of 12,111 ECG 
recordings with 619,681 QRS annotations (length 45 
seconds, 200Hz sampling) and 73,450 recordings 
accompanied by rhythm annotations (length 30 s, 200 Hz 
sampling).  

The software presented in this paper was verified using 
a set of 82 files from various devices (episode recorders, 
Holter recorders, wearables). The set consisted of private 
(MDT) and public (PhysioNet Challenge 2015 [2]) data. 
Sampling frequencies varied from 125 to 256 Hz (med. 250 
Hz, IQR 0 Hz) in lengths from 30 to 17,115 seconds 
(1,057±2,915). Table 1 shows further dataset description, 
grouped by data origin. Recordings were semi-
automatically annotated using the SignalPlant software [3]. 

 
Table 1. Verification (benchmark) dataset by data origin. 
PAC-premature atrial contraction, PVC-premature 
ventricular contraction, VT-ventricular tachycardia 
(sustained), NSVT-non-sustained ventricular tachycardia, 
SVT-supraventricular tachycardia run, AFIB-atrial 
fibrillation, AVBII-2nd degree AV-block. PC2015-
CinC/PhysioNet Challenge 2015, MDT-Medical data 
transfer, Brno, Czechia. 

 
Dataset QRS count 

(Files) 
Device Pathologies 

MDT 110,266 
(67) 

Faros,  
Getemed, 
Vitaphone 

PAC, PVC, VT, 
NSVT, SVT, 
AVBII, AFIB, 
Pauses, Noise 

PC2015 
[2] 1,028 (15) Unknown PAC, PVC, VT, 

NSVT, Noise 
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3. Method 

The presented software is designed as a multiplatform 
command line tool. It allows execution in several modes; 
the one specific to the TMC is to wait at a specific folder 
(shared with other software instances running on other 
computers) and wait for incoming ECG recordings 
(usually 30-60 s or 1 hour long). Then each waiting file is 
processed (Fig.1), and the solver waits again.  

 
 
Figure 1. Simplified software flowchart. Input ECG signal 
(A) is loaded, optionally with a configuration file (B). The 
signal is split into one-hour chunks (C); each chunk is split 
into a batch with 30 s long signals (D). The signal is filtered 
(0.5-45 Hz), down-sampled to 100 and 200 Hz (E), and fed 
into two deep-learning models (F, G). Model outputs are 
post-processed (H), and rhythm episodes are connected 
between one-hour blocks (I). Finally, results are exported 
as an XML file and, optionally, as SignalPlant [3] mark file 
(*.sel) or others. 
 

3.1 Deep-learning models 

The “heart” of the software is formed by two deep-
learning models, both working in 30 s blocks. Input to both 
models is filtered (0.5-45 Hz) and standardized. The first 
one detects and classifies QRS complexes into three 
classes [1] (Fig.1F). The second model (ResNet 
architecture) determines heart rhythm (AFIB, AVBII, or 
noise) in the group. Both models are linked to the 
application using the Open Neural Network Exchange 
(ONNX) file format; therefore, they can be updated 
without significant changes to the core application. 

 
3.2 Output postprocessing 

Other rhythm disorders are computed during the post-
processing stage when information is fused from both 
models: VT, NSVT, pauses, SVT runs or blocks, and PVCs 
or PACs in various patterns such as couplets, triplets, 
bigeminies, etc. The software also provides clustering by 
QRS morphology (Fig.1H and I). 

However, results from each one-hour block must be 
connected to surrounding one-hour blocks. Also, the 
average QRS from each morphological group is used for 
final morphological clustering over all one-hour blocks. 
For each one-hour block, a heart rate descriptive statistic is 
also included (Fig.1I).  

Finally, the results are exported as an XML file 
containing all rhythm episodes, a description of present 
morphologies and their belonging to a specific QRS class, 
and a list of QRS complexes with their class and 
morphological group. (Fig.1J). Optionally, episodes and 
QRS marks can be exported in SignalPlant [3] format for 
annotation marks (*.sel) or as CSV or PNG files containing 
raw model output (Fig.1K). 

We used C# programming language with the .NET 
framework to build the application (ver. 5.0). Deep-
learning inference is provided by Microsoft.ML.ONNX 
libraries (ver. 1.11.0). 

We used Python 3.8 with Pandas [4] and Numpy [5] 
packages for model training codes; the PyTorch 
framework [6] was used to train deep-learning models. 

 
3.3.  Verification with benchmark 

We built an automated pipeline to verify software after 
each commit to the local GitLab repository. We used 
Python 3.8, Pandas [4], Numpy [5], and Scikit-learn [7] 
packages for benchmark development. The benchmark 
checks the quality of QRS detection and classification, 
other rhythm disorders scores, and noise detection scores.  

Since the target deployment is in the TMC, we also 
needed to estimate computing time in different processing 
scenarios. The Wilcoxon signed-rank pair test was used for 
statistical testing.  
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4. Results 

We developed a fully automated, back-end application 
classifying ECG signals. The latest stable version deployed 
in TMC (0.3.110) worked using a cluster of one physical 
and four virtual computers. These computers shared a 
single network folder for incoming data and have run 
without crashes since November 2021. The current load is 
approximately 400x 1-hour ECG recordings per 
computing hour, occupying one-third of the total 
computational capacity. In addition, other software 
instances process shorter recordings (30 s) from wearables 
such as smartwatches or bands.  

 
4.1.  QRS Complexes 

The benchmark showed a mean weighted QRS 
detection/classification accuracy of 0.97 ± 0.044 in 82 
ECG files. Table 2 shows specific scores for each of the 
separate QRS classes Normal, PAC and PVC. 
 
Table 2. Mean accuracy of QRS detection and 
classification of QRS complexes. PAC - premature atrial 
contraction, PVC – premature ventricular contraction. 
(Overall accuracy is weighted). 

 
QRS type Count Accuracy 
Normal  95,399 0.980 ± 0.035 
PVC 13,384 0.918 ± 0.191 
PAC 2,379 0.928 ± 0.185 
Overall 111,162 0.972 ± 0.044 

 
4.2.  Rhythm classification 

The automated benchmark pipeline analyzed the 
classification performance of seven rhythm groups 
(Tab.3). 

 
Table 3. Performance of rhythm classification into seven 
groups. AFIB-atrial fibrillation, AVB(II)-2nd degree AV 
block (type I+II), VT-sustained ventricular tachycardia, 
NSVT-non-sustained ventricular tachycardia, SVT-
supraventricular tachycardia. 

 
Rhythm In files Total seconds Accuracy 
AFIB 21 27,507 0.921 ± 0.206 
AVB(II) 7 653 0.932 ± 0.216 
PAUSE 12 254 0.997 ± 0.017 
VT 9 59 0.991 ± 0.031 
NSVT 11 102 0.988 ± 0.037 
SVT 10 520 0.996 ± 0.017 
NOISE 15 1,707 0.952 ± 0.119 
Overall 82 30,802 0.968 ± 0.030 

 

Overall average accuracy reached 0.968 ± 0.030 with a 
minimal value of 0.921 ± 0.216 for AF; maximal accuracy 
was reached for pauses (0.997). The highest standard 
deviation was found in AVBII and AF classes.  

The software also detects other pathological rhythms 
tightly linked to the QRS class as PVC couplets, triplets, 
bigeminies, etc. These other pathological classes are not 
checked with benchmark tests since they are already 
covered during the test of QRS complexes. The only 
exceptions are VT, NSVT, and SVT, presented in Tab.3. 

 
4.3.  Processing Time 

During the benchmark test, we also monitored 
computing performance. The hardware configuration for 
the test was an HP Z6 G4 workstation with CPU Intel® 
Xeon ® Silver 4116 CPU at 2.1 GHz, 64 GB of RAM, and 
running on the 64-bit operating system Windows 10. We 
did the benchmark twice; for the first, deep-learning 
inference was done only using CPU; the other run used one 
GPU Nvidia GeForce GTX 1080 Ti for inference. 
Processing times were evaluated for three groups of files 
from the benchmark dataset: 30-60 seconds (N=26), 60-
120 seconds (N=35), and one hour (N=10).  

 
Figure 2. The effect of using GPU (orange) or CPU (gray) 
for deep-learning inference in three benchmark subsets by 
file length: 30-60 seconds (A, N=26), 60-120 seconds (B, 
N=35), and 3,600 seconds (C, N=10).  
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Fig. 2A shows that in shorter files (30-60 seconds), 
GPU does not show a lower processing time than the CPU 
(p=0.95). However, in slightly longer files (Fig.2B), using 
GPU lowers computing times (p=0.003). In long files 
(3,600 seconds, Fig.2C), the total computing time is nearly 
2.5 times shorter (p=0.003). 

 

 

Figure 3. The proportion of inference time in three subsets 
of benchmark files (A) shows that inference is not the most 
computationally consuming process when using GPU in 
long files (3,600 s). The detail of distribution in long files 
with GPU (B) shows how much other software blocks 
consume computing time. 

 
5. Discussion 

The benchmark test showed AFIB class has the weakest 
accuracy of all considered rhythm classes, followed by 
AVBII and NOISE. This can be caused by the fact that 
deep-learning inference for considering these episodes 
works in 30 s window (1-second overlap). Consequently, 
results for AFIB/AVBII and NOISE episodes can start/end 
only at 30-second intervals. This leads to unprecise 
starts/ends in cases where, for example, an AFIB episode 
starts at the 15th second and ends in the 45th second of a 
recording. On the other hand, VT or SVT episodes depend 
on a QRS detector model's findings, which might explain 
their better accuracy. A possible solution to this issue is 
finding an approach that could point to parts of signals 
necessary for a specific decision. We experimented with an 
attention mechanism inspired by [8]; however, we did not 
reach acceptable results.  

Although the computational power in the current 
deployment in TMC shows enough reserve for computing 
data in real-time, we would like to decrease the 
computational complexity further. The first step could be 
consistent pre-processing for both deep-learning models. 
Moreover, both deep learning models could be combined 
into one model with multiple output heads, decreasing the 
time required for transferring data to the GPU and back. 

Also, FFT band-pass filtering could be provided by GPU, 
as we already implemented in the past [9].  

 
6. Conclusion 

We presented scalable and multiplatform ECG 
processing back-end software for use in the ecosystem of 
TMC. Scalability means that the number of software 
instances waiting for data in a shared folder is variable and 
may be changed on the fly. Therefore, its computing 
capacity may be adopted to TMC needs, including optional 
GPU acceleration. The software currently runs on 
Windows (physical machine with GPU) and Linux (virtual 
machines) operating systems. Although the software is not 
freely accessible, we are open to considering processing 
ECG data for research and non-commercial purposes. 

 
Acknowledgments 

The research was supported by the Czech Technological 
Agency grant number FW01010305 and the project 
RVO:68081731 by the Czech Academy of Sciences. 

 
References 

[1] A. Ivora et al., “QRS detection and classification in 
Holter ECG data in one inference step,” Sci. Reports |, 
vol. 12, p. 12641, 123AD. 

[2] G. D. Clifford et al., “False alarm reduction in critical 
care,” Physiol. Meas., vol. 37, no. 8, pp. E5--E23, 2016. 

[3] F. Plesinger, J. Jurco, J. Halamek, and P. Jurak, 
“SignalPlant: An open signal processing software 
platform,” Physiol. Meas., vol. 37, no. 7, 2016. 

[4] W. McKinney, “Data Structures for Statistical 
Computing in Python,” Proc. 9th Python Sci. Conf., pp. 
56–61, 2010. 

[5] C. R. Harris et al., “Array programming with NumPy,” 
Nat. 2020 5857825, vol. 585, no. 7825, pp. 357–362, 
Sep. 2020. 

[6] A. Paszke et al., “PyTorch: An imperative style, high-
performance deep learning library,” in Advances in 
Neural Information Processing Systems, 2019, vol. 32. 

[7] F. Pedregosa et al., “Scikit-learn: Machine learning in 
Python,” J. Mach. Learn. Res., 2011. 

[8] I. M. Baltruschat, H. Nickisch, M. Grass, T. Knopp, and 
A. Saalbach, “Comparison of Deep Learning 
Approaches for Multi-Label Chest X-Ray 
Classification,” Sci. Reports 2019 91, vol. 9, no. 1, pp. 
1–10, Apr. 2019. 

[9] P. Nejedly, F. Plesinger, J. Halamek, and P. Jurak, 
“CudaFilters: A SignalPlant library for GPU-accelerated 
FFT and FIR filtering,” Softw. - Pract. Exp., 2017. 

 
Address for correspondence: 
 
Filip Plesinger 
ISI of the CAS 
Kralovopolska 147, Brno, Czech Republic 61264 
fplesinger@isibrno.cz 

Page 4


